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The question

Signals from
Neo’s brain

: i )
(modified from http://whatisthematrix.warnerbros.com/)



What is he seeing?







Let the computer learn!:
Machine learning-based decoding
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fMRI decoding of visual orientation
(Kamitani & Tong, Nat. Neurosci. 2005)
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Columns and voxels
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(cf., Boynton, 2005; Rojer and Schwartz, 1990)

7



Ensemble feature selectivity
(Kamitani & Tong, 2005, 2006)
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1-D simulation of columns and voxels
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Method of “neural mind-reading”
(Kamitani & Tong, 2005, 20006)

Training with
unambiguous
stimuli (relatively
objective)

Prediction of
subjective states

Assumption: Stimulus-induced perception and subjective
mentation share some neural representation.




Neural mind-reading of attention

(Kamitani & Tong, 2005, 20006)

What’s on your mind, Neo?
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(c.f., Mind-reading of mental imagery:

Stokes et al.,2009:; Harrison et al.,
2009)




Decoding from human hippocampus

(Hassabis et al. Curr Biol 2009)
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Decoding accuracy (%)

Neural art appraisal of painter: Dali
or Picasso?

(@) Neural art appraiser

Trained with:

‘Dal?’ ‘Picasso’
Image  Voxels Image  Voxels

(Yamamura, Sawahata,
Yamamoto, Kamitani, 2009)
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Decoding into an image:
Visual image reconstruction
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Modular decoding approach

(Miyawaki, Uchida, Yamashita, Sato, Morito, Tanabe, Sadato,
Kamitani, Neuron 2008)
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Reconstruction using multi-scale
local image decoders

fMRI signals
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Procedure

Training
~400 random images (~ 1 hour)

SRR -

Test
Geometric shapes, alphabets, random images (not used in training)
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Automatic voxel selection by local decoder
(Yamashita, Sato, Yoshioka, Tong, Kamitani, Neuroimage 2008)

_Sparse logistic regression
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- Finds an optimal set of voxels for each image basis from the
whole visual cortex.

- Selected voxels form a complex pattern, outperforming
retinotopy-based prediction.

18



Reconstruction results:
Block averaged fMRI signals (6 volumes = 12 s)
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Frosontod image Hocorstructed smage
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(Miyawaki, Uchida, Yamashita, Sato, Morito, Tanabe, Sadato, Kamitani, Neuron 2008)
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Encode vs. decode models

» Encode » -0
model

(Kay et al. Nature 2008;

Mitchell et al. Science 2008)
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Automatic extraction of image bases:
A Bayesian CCA model
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(Fujiwara, Miyawaki, Kamitani, NIPS 2009)
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Image bases estimated from data

(a) Estimated image bases by Bayesian CCA
1-pixel basis

BHEE sle___

T
AN
o

2-pixel basis
2x1 1x2 1x2
3-pixel basis

f
o

L 40

L-shape 3x1 1x3 3 4 5 6
Eccentr|C|ty [deg]

Aouanba.

24



G Get The Sun on your mobile

THE

Sin

Sunday, August 23, 2009

HOME

Swine Flu
Forces

MYSUN SUNLITE SITEMAP NEWSALERTS SUNTALK

Got a story? Text:

- Email: talkback@the-sun.co.uk

Captain Crunch
Sun Justice

Sun Money

Sun City

Royals

The Green House
Maddie

Scottish News
Sun Says

Dear Sun
Gardening
British X-Files :
Weird e
77

MICHAEL

JACKSON

L

Football

Dream Team
The Ashes

F1 & Motorsport
[+ more

Bizarre
Bizarre USA
Film

By LEON WATSON
Published: 11 Dec 2008

Music
[¥] more

DREAMY scientists say they will come up with
new technology which shows what is on our
T minds when we're ASLEEP.

X Factor

Brit's Got Talent

i

The Japanese research team claims its groundbreaking
study could eventually display dreams on a computer

S screen.

Dream ... will it come true?
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(The Sun, 11 Dec, 2008)
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Visual cortical activation during REM

fMRI activity during REM (triggered by eye movements)
(Miyauchi et al., 2008)



Flexible mesh ECoG array
(Collaboration with Niigata U. and U. Tokyo)
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(Toda, Sawahata, Suzuki, Majima, Kamitani, Hasegawa, 2011)
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Toward brain-to-brain communication

O
STEPS5 |
Laser light of specific wavelength
opens ion channel in neurons. | ==
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Record electrophysiological
and behavioural results.
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(Buchen, 2010)



“Neural coder converter’

(Kamitani et al., in prep)
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Reconstruction from
predicted brain activity

Subject 1 Subject 2

Trained model Predicted brain
activity

Application to “Image/thought transfer”?




Brain-based visual communication
1.0

Externalization of Image understanding via
—_Iinternal image ordinary sensory pathwg. T
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Brain-based visual communication
2.0

Brain-to-brain transfer by neural code
conversion and stimulation
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Summary
1. Machine learning-based approach to the
decoding
2. Primitive form of neural mind-reading

3. Subvoxel neural representation as a possible
information source

4. Modular decoding and its application to visual
image reconstruction

5. Neural code converter and its implication for
brain-to-brain communication

33



Acknowledgments

ATR-CNS

O. Yamashita
Y. Miyawaki
M. Sato

H. Uchida

Y. Fujiwara
K. Yamada

Vanderbilt NIPS

F. Tong “Morito Codes and data available at:

Y | e
N Tanabe http://www.cns.atr.jp/dni/
N

- @ykamit

34


http://www.cns.atr.jp/dni/
http://www.cns.atr.jp/dni/

